TOPOLOGY II BACKPAPER EXAM

Attempt any SEVEN questions, all questions carry equal marks.

- (1) Show that $S^1 \times S^1$ and $S^1 \vee S^1 \vee S^2$ have isomorphic homology groups in all dimensions but their universal covering spaces do not.
- (2) Compute the homology groups of all the nonorientable compact surfaces N_g (here, N_g is the connected sum of g copies of the real projective plane).
- (3) Describe a CW complex structure on the complex projective spaces \mathbb{CP}^n (for all $n \ge 1$), and compute their homology groups using the associated cellular complex.
- (4) Given any positive integer n, construct a path connected topological space X such that $H_n(X) \cong \mathbb{Z}/2\mathbb{Z}$ and all other reduced homology groups of X are trivial.
- (5) Compute the homology groups $H_i(\mathbb{RP}^2; \mathbb{F}_p)$ of \mathbb{RP}^2 with coefficients in the finite field \mathbb{F}_p with p elements (where p is any prime integer).
- (6) Compute the relative homology groups $H_i(S^3, S^2)$ where S^2 is the "equator" of S^3 $(S^2 = \{(x, y, z, w) \in S^3 | w = 0\}).$
- (7) Draw pictures and describe two path connected covering spaces of the figure eight, one of which is regular and the other which is not. Justify your answers.
- (8) What is the fundamental group of $\mathbb{R}P^2 \vee \mathbb{R}P^2$? What is its universal covering space?
- (9) What is the fundamental group of a Mobius strip? Draw all connected covering spaces of it.
- (10) What is the fundamental group of a Klein bottle? What is its universal covering space? Draw a non trivial covering map of the Klein bottle which is not the universal covering map.